System Identification Using Fuzzy Models
نویسنده
چکیده
منابع مشابه
Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملSoft Computing Techniques for System Identification using Matlab/Simulink
The adaptive fuzzy and fuzzy neural models are being widely used for identification of dynamic systems. This paper describes different fuzzy logic and neural fuzzy models. The robustness of models has further been checked by Simulink implementation of the models with application to the problem of system identification. The approach is to identify the system by minimizing the cost function using...
متن کاملDesign of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems
In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملTHE IDENTIFICATION OF EFFICIENCY BY USING FUZZY NUMBERS
In original Data Envelopment Analysis (DEA) models for measuring the relative efficiencies of a set of Decision Making Units (DMUs) using various inputs to produce various outputs are limited to crisp data. To deal with imprecise data, the notion of fuzziness has been introduced. this paper develops a procedure to measure the efficiencies of DMUs with fuzzy observations. The basic idea is to tr...
متن کامل